Szebeni, J. et al. (2018). “Roadmap and strategy for overcoming infusion reactions to nanomedicines” Nat Nanotechnol  <Link>

Mészáros, T. et al. (2018). “Involvement of complement activation in the pulmonary vasoactivity of polystyrene nanoparticles in pigs: unique surface properties underlying alternative pathway activation and instant opsonization.” Int J Nanomedicine  13: 6345-6357. <Link>

Zamboni, WC. et al. (2018). “Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations” Adv Drug Deliv Rev. <Link>

Neun, BW. et al. (2018). “Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro” Molecules 23(7) 1700. <Link>

Szebeni, J. et al. (2018). “A porcine model of complement activation-related pseudoallergy to nano-pharmaceuticals: Pros and cons of translation to a preclinical safety test” Prec Nanomedicine 1(1): 63-73. <Link>

Matviykiv , S. et al. (2018). “Immunocompatibility of Rad-PC-Rad liposomes in vitro, based on human complement activation and cytokine release” Prec Nanomedicine 1(1): 43-62. <Link>

Unterweger , H. et al. (2018). “Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety” Int J Nanomedicine 13:1899-1915. <Link>

Szebeni, J. (2018). “Mechanism of nanoparticle-induced hypersensitivity in pigs: complement or not complement?” Drug Discov Today 23(3): 487-492. <Link>

Fülöp, T. et al. (2018). “Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model correlation with physicochemical features and clinical information” Journal of Controlled Release 270: 268-274.  <Link>

Cedrone, E. et al. (2017). “Anticoagulants Influence the Performance of In Vitro Assays Intended for Characterization of Nanotechnology-Based Formulations” Molecules 23(1), 12. <Link>

Buscema, M. et al. (2017). “Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo” Journal of Controlled Release 264: 14-23. <Link>

Unterweger, H. et al. (2017). “Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging” International Journal of Nanomedicine 12: 5223–5238. <Link>

Wibroe, PP. et al. (2017). “Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes.” Nat Nanotechnol. 12(6):589-594. <Link>

Fülöp, T. et al. (2017). “The role of thromboxane A2 in complement activation-related pseudoallergy.” Eur Journal of Nanomedicine 9(2): 59. <Link>

Őrfi, E. and Szebeni, J. (2016). “The immune system of the gut and potential adverse effects of oral nanocarriers on its function.” Adv Drug Deliv Rev 106: 402-409. <Link>

Bozó, T.; Mészáros, T. et al. (2016). “Aggregation of PEGylated liposomes driven by hydrophobic forces.”Colloids and Surfaces B: Biointerfaces 147: 467-474. <Link>

Jackman, J. et al. (2016). “Comparison of complement activation-related pseudoallergy in miniature and domestic pigs: foundation of a validatable immune toxicity model.” Nanomedicine 12(4): 933-943. <Link>

Mészáros, T. et al. (2016). “Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro.” Nanomedicine 12(4): 1023-1031. <Link>

Matuszak, J. et al. (2016). “Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing.” Nanomedicine (Lond) 11(6): 597-616. <Link>

Szebeni, J. and G. Storm (2015). “Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.” Biochem Biophys Res Commun 468(3): 490-497. <Link>

Csukas, D. et al. (2015). “AC5 Surgical Hemostat as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model.” Nanomedicine 11(8): 2025-2031. <Link>

Milosevits, G. et al. (2015). “Exosomes: potential model for complement-stealth delivery systemss.” Eur Journal of Nanomedicine 7(3): 207-218. <Link>

Dezsi, L. et al. (2015). “Rodent models of complement activation-related pseudoallergy: Inducers, symptoms, inhibitors and reaction mechanisms.” Eur Journal of Nanomedicine 7(1): 15-25. <Link>

Yorulmaz S et al. (2015). “Membrane attack complex formation on a supported lipid bilayer: initial steps towards a CARPA predictor nanodevice.” Eur Journal of Nanomedicine 7(3): 245-255. <Link>

Csukas, D. et al. (2015). “Pulmonary intravascular macrophages: prime suspects as cellular mediators of porcine CARPA.” Eur Journal of Nanomedicine 7(1): 27-36. <Link>

Urbanics, R. et al. (2015). “Lessons learned from the porcine CARPA model: constant and variable responses to different nanomedicines and administration protocols.” Eur Journal of Nanomedicine 7(3): 219-231. <Link>

Kozma, G. T. et al. (2015). “Variable association of complement activation by rituximab and paclitaxel in cancer patients in vivo and in their screening serum in vitro with clinical manifestations of hypersensitivity: a pilot study.”Eur Journal of Nanomedicine 7(4): 289-301. <Link>

Mészáros, T. et al. (2015). “Paradoxical rise of hemolytic complement in the blood of mice during zymosan- and liposome-induced CARPA: a pilot study.” Eur Journal of Nanomedicine 7(3): 257-262. <Link>

Dezsi, L. et al. (2014). “Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses.” J Control Release 195: 2-10. <Link>

Bedocs, P. et al. (2014). “Hypersensitivity reactions to intravenous lipid emulsion in swine: relevance for lipid resuscitation studies.” Anesth Analg 119(5): 1094-1101. <Link>

Szebeni, J. (2014). “Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.” Mol Immunol 61(2): 163-173. <Link>

Szebeni, J. and P. Haima (2013). “Hemocompatibility of medical devices, blood products, nanomedicines and biologicals” TECOmedical Clinical & Technical Review <Link>

Moghimi, S. M. et al. (2013). “Surfactant-mediated complement activation in beagle dogs.” Int Immunopharmacol 17(1): 33-34. <Link>

Dezsi, L. et al. (2013). “Cardiopulmonary and hemodynamic changes in complement activation-related pseudoallergy” Health 5(6): 1032-1038. <Link>

Szebeni, J. et al. (2013). “Plasma Proteome Profiling with Monoclonal Antibody Libraries: A Pilot Biomarker Analysis for Nanomedicine-Induced Complement Activation.” Advances in Nanoparticles 2(2): 133-144. <Link>

Szebeni, J. et al. (2012). “A porcine model of complement-mediated infusion reactions to drug carrier nanosystems and other medicines.” Adv Drug Deliv Rev 64(15): 1706-1716. <Link>

Szebeni, J. et al. (2012). “Prevention of infusion reactions to PEGylated liposomal doxorubicin via tachyphylaxis induction by placebo vesicles: a porcine model.” J Control Release 160(2): 382-387. <Link>

Milosevits, G. et al. (2012). “Flow cytometric analysis of supravesicular structures in doxorubicin-containing pegylated liposomes.” Chem Phys Lipids 165(4): 482-487. <Link>

Weiszhár, Z. et al. (2012). “Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20.” Eur J Pharm Sci 45(4): 492-498. <Link>

Szebeni, J. et al. (2012). “Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome.” Nanomedicine 8(2): 176-184. <Link>

Szebeni, J. et al. (2011). “Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention.” Adv Drug Deliv Rev 63(12): 1020-1030. <Link>

Merkel, O. et al. (2011). “In vitro and in vivo complement activation and related anaphylactic effects associated with polyethylenimine and polyethylenimine-graft-poly(ethylene glycol) block copolymers.” Biomaterials 32(21): 4936-4942. <Link>

Moghimi, S. M. et al. (2010). “Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead.” J Control Release 146(2): 175-181. <Link>

Epstein-Barash, H. et al. (2010). “Physicochemical parameters affecting liposomal bisphosphonates bioactivity for restenosis therapy: internalization, cell inhibition, activation of cytokines and complement, and mechanism of cell death.” J Control Release 146(2): 182-195. <Link>

Racz, Z. et al. (2010). “Sugar-free, glycine-stabilized intravenous immunoglobulin prevents skin but not renal disease in the MRL/lpr mouse model of systemic lupus.” Lupus 19(5): 599-612. <Link>

Szebeni, J. and  Moghimi, S. M.(2009). “Liposome triggering of innate immune responses: a perspective on benefits and adverse reactions.” J Liposome Research 19(2): 85-90. <Link>